L(j, k)-labelling and maximum ordering-degrees for trees

نویسندگان

  • Justie Su-tzu Juan
  • Daphne Der-Fen Liu
  • Li-Yueh Chen
چکیده

Let G be a graph. For two vertices u and v in G, we denote d(u, v) the distance between u and v. Let j, k be positive integers with j > k. An L(j, k)labelling for G is a function f : V (G) → {0, 1, 2, · · ·} such that for any two vertices u and v, |f(u) − f(v)| is at least j if d(u, v) = 1; and is at least k if d(u, v) = 2. The span of f is the difference between the largest and the smallest numbers in f(V ). The λj,k-number for G, denoted by λj,k(G), is the minimum span over all L(j, k)-labellings of G. We introduce a new parameter for a tree T , namely, the maximum ordering-degree, denoted by M(T ). Combining this new parameter and the special family of infinite trees introduced by Chang and Lu [3], we present upper and lower bounds for λj,k(T ) in terms of j, k, M(T ), and ∆(T ) (the maximum degree of T ). For a special case when j > ∆(T )k, the upper and the lower bounds are k apart. Moreover, we completely determine λj,k(T ) for trees T with j > M(T )k.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lexicographical ordering by spectral moments of trees with a given bipartition

 Lexicographic ordering by spectral moments ($S$-order) among all trees is discussed in this‎ ‎paper‎. ‎For two given positive integers $p$ and $q$ with $pleqslant q$‎, ‎we denote $mathscr{T}_n^{p‎, ‎q}={T‎: ‎T$ is a tree of order $n$ with a $(p‎, ‎q)$-bipartition}‎. Furthermore, ‎the last four trees‎, ‎in the $S$-order‎, ‎among $mathscr{T}_n^{p‎, ‎q},(4leqslant pleqslant q)$ are characterized‎.

متن کامل

Degrees in $k$-minimal label random recursive trees

This article describes the limiting distribution of the degrees of nodes has been derived for a kind of random tree named k-minimal label random recursive tree, as the size of the tree goes to infinity. The outdegree of the tree is equal to the number of customers in a pyramid marketing agency immediatly alluring

متن کامل

Labelling Graphs with the Circular Difference∗

For positive integers k and d ≥ 2, a k-S(d, 1)-labelling of a graph G is a function on the vertex set of G, f : V (G) → {0, 1, 2, · · · , k− 1}, such that |f(u)− f(v)|k ≥ { d if dG(u, v) = 1; 1 if dG(u, v) = 2, where |x|k = min{|x|, k − |x|} is the circular difference modulo k. In general, this kind of labelling is called the S(d, 1)-labelling. The σdnumber of G, σd(G), is the minimum k of a k-...

متن کامل

Linear and cyclic distance-three labellings of trees

Given a finite or infinite graph G and positive integers `, h1, h2, h3, an L(h1, h2, h3)labelling of G with span ` is a mapping f : V (G) → {0, 1, 2, . . . , `} such that, for i = 1, 2, 3 and any u, v ∈ V (G) at distance i in G, |f(u)−f(v)| ≥ hi. A C(h1, h2, h3)-labelling of G with span ` is defined similarly by requiring |f(u)− f(v)|` ≥ hi instead, where |x|` = min{|x|, `− |x|}. The minimum sp...

متن کامل

Maximum Agreement Subtree in a Set of Evolutionary Trees-Metrics and Efficient Algorithms

The maximum agreement subtree approach is one method of reconciling different evolutionary trees for the same set of species. An agreement subtree enables choosing a subset of the species for whom the restricted subtree is equivalent (under a suitable definition) in all given evolutionary trees. Recently, dynamic programming ideas were used to provide polynomial time algorithms for finding a ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 158  شماره 

صفحات  -

تاریخ انتشار 2010